Мы сделаем всё, чтобы вы остались довольны нашей работой!

Цифровой цвет. Продолжение.

Цифровой цвет. Первая часть статьи.

Что происходит со светом, после того, как он попадает на матрицу цифрового фотоаппарата?

Матрица похожа на сетчатку глаза. Не смотря на высокую прецизионность технологий, каждая матрица в своем роде уникальна. И что бы каким-то образом получить приличную адекватность электронной картинки, ученые и инженеры серьезно потрудились.

Конечно, существуют стандарты и производители матриц их четко придерживаются, но как и каждй человек, так и матрицы чуть-чуть по-своему воспринимают цвета. Если в колориметрии пренебрегают таким малым разбросом, так и мы не будем более на него обращать внимание.

Мы не будем рассматривать цветовые искажения в аналоговом тракте фотоаппарата, например – хроматическую аберрацию, наша тема – цифровой цвет.

Какие же характеристики важны для  «электронной сетчатки»?

Первая – цветовой охват.

Помните диаграмму цветности xyY из предыдущей статьи? А цветовое пространство человека в системе xyY? Эта трехмерная фигура, расположенная в соответствующей координатной системе и будет определять, какие цвета матрица или любое другое устройство (от фотопленки до монитора) может воспринять или воспроизвести. Чем больше объем этой фигуры – тем больший цветовой охват.

Цветовой охват человеческого глаза на сегодня недостижим ни для одного из существующих типов сенсоров.

Примерное представление может дать рисунок: самая большая фигура – примерный (к сожалению, под рукой не оказалось точного профиля на человека) охват человеческого зрения, внутри него – охват стандарта sRGB (на него сейчас ориентируются все массовые мониторы и цифровые фотокамеры). Внутри sRGB – синяя область – это охват Фотобумаги Kodak Professional. Видите, как уменьшается цветовой охват по мере перехода от реального изображения к фотографии?

Вторая характеристика – число воспринимаемых (воспроизводимых) цветов.

Она определяет сколько элементов (цветов) внутри области охвата способно различить устройство.

Охват может быть и большим, но если число воспринимаемых цветов (битность цвета) мало, то изображение будет как-бы постеризованное, с резкими переходами на цветовых градиентах. Обычно чем больше область цветового охвата, тем больше число различимых цветов.

Пожалуйста не путайте цветовой охват, кол-во воспринимаемых цветов ( «цветовое разрешение») и разрядность ( «битность») итогового изображения.

Форматы файлов в фотокамерах

Камера (в зависимости от модели) может сохранять снимок в файлах различного формата.

Если Вы еще не сталкивались с компьютерными графическими файлами, коротко расскажу о том, что это такое. Есть два принципиально различных способа записи изображения — векторное и растровое. Первый к цифровому фото не имеют прямого отношения, т.к. изображения там представлены в виде наборов геометрических фигур, заданных формулами. Вторые – растровые как раз то, с чем мы и будем иметь дело.

Что такое растровый файл?

Это двухмерная матрица или таблица, где каждая ячейка – это элемент изображения – пиксел, который характеризуется цветом. Цвет можно записать в любой системе (см. предыдущую статью). В силу того, что большую часть цифровых изображений мы рассматриваем с помощью мониторов, это – RGB, т.е. три набора чисел – три канала. Чем выше разрядность канала, тем больше информации о цвете пикселя можно сохранить, но тем больше размер файла. Именно поэтому стараются придумать всяческие ухищрения – алгоритмы сжатия, дабы размер файла сократить.

Самый распространенный (но отнюдь не самый простой) – JPEG. Этот формат предусматривает сжатие информации с потерями. Вдаваться в подробности не будем. Заметим, что сжатие происходит за счет усреднения информации о цветности и яркости в группах соседних пикселей. Такое возможно из-за несовершенства зрительной системы человека: нерезкие изменения цветности или яркости глаз не распознает.

Главный вывод: JPEG предназначен для просматриваемых человеком изображений. Он НЕ подходит в качестве рабочего формата (для кардинального редактирования). Т.е. если Вы сняли кадр в JPEG, немного отредактировали цветовой баланс, яркость и контраст, а затем отнесли в минилаб для печати – все ОК. Но если вы собираетесь в дальнейшем неоднократно редактировать что-то      в файле, выправить грубые ошибки экспозиции, качественно подавить шумы – формат JPEG не подходит. При каждом пересохранении в нем происходит накопление ошибок сжатия с потерями: уменьшается резкость (визуальное разрешение файла), сокращается количество цветов, появляются хорошо видимые глазом артефакты сжатия (мозаичность изображения).

Уж если Ваша камера позволяет сохранять только в JPEG или Вы по какой-то причине сняли кадр в JPEG, то для последующего редактирования сохраните его в родном формате Photoshop (PSD) или TIFF… да в любом формате сжатия БЕЗ потерь (BMP, PNG, TGA).

Этот формат представляет непосредственный слепок информации с матрицы камеры. У каждой фирмы и класса камер он свой. Если камера поддерживает такой формат, то обязательно в софте, поставляемом с камерой есть конвертор, который, во-первых сможет перевести информацию в удобоваримый формат (обычно TIFF и JPEG), а во-вторых подправить баланс белого, яркость, контраст, цветовой баланс и применить ряд фильтров. Обычно конвертор дублирует все функции обработки изображения в камере, включая малоприменимые эффекты типа сепии.

Формат «одноразовый»: т.е. пересохранить файл в него нельзя. Это аналог пленочного негатива – эдакий цифровой негатив. Я все важные или сложные по условиям съемки кадры стараюсь снимать именно в RAW. Потом сохраняю эти файлы как исходники, а работаю уже в PSD.

Для Adobe Photoshop есть «родной» плагин, позволяющий читать RAW-форматы большинства камер. Однако не всегда он лучше родных конверторов. Скажем Canon FileViewer эффективно подавляет шумы и дает более сочные цвета, чем  «адобовский» плагин.

Формат, позволяющий выбрать алгоритм сжатия, в т.ч. и полностью его отключить. Для обеспечения совместимости обычно используют TIFF без сжатия и дополнительных каналов, т.е. аналог BMP. Однако TIFF хорошо поддерживает 16-битные изображения. Иногда сами фотокамеры предлагают записывать файл в этом формате, как альтернативном JPEG.

Профайлы

Вот о них, родимых, все почему-то и забывают. Профайл как раз и описывает цверовые характеристики устройства и еще ряд параметров, необходимых для того, чтобы при дальнейшей обработке файла можно было четко сказать какого цвета тот или иной пиксель. Иными словами – профайл характеризует устройство на котором было получено изображение.

Еще раз: БЕЗ профайла графический файл информации о цвете НЕ несет.

Цвет – это не набор байтов в трех каналах. Цвет – это психофизиологичекое ощущение, которое более-менее увязали со спектральным составом цвета, падающего на сетчатку. Если не связать численные коды цвета пикселя со спектром, цвет мы не определим. А профайл как раз и позволяет осуществить такую связь, но уже в компьютере.

Про профайлы и системы управления цветом можно написать большую статью и не одну. Пока замечу лишь одно. В последние годы стандартом принят sRGB. Профиль, описывающий этот цветовой охват установлен по-умолчанию с 7-й версии Photoshop, прикрепляется к снимкам большинства массовых цифровых камер, новые мониторы и принтеры настраиваются под него.

Так что, если  «ничего не трогать», а главное – если нет необходимости экспериментировать с выбором других профилей и охватов, то все должно быть ОК. Если таковая необходимость есть – нужно основательно изучать литературу по цветопередаче.

Допечатная обработка

…обычно выполняется дома… обычно в Adobe Photoshop, ставшим чуть ли не индустриальным стандартом. Что у нас дома? Обычный монитор дюймов на 17 – 19. Что есть монитор – устройство отображения. В цветовом плане он, как и матрица фотоаппарата имеет цветовой охват и цветовое разрешение.

Здесь же замечу, что для  «художественной» работы с фото более подходит монитор с электронно-лучевой трубкой, а не TFT. Потому что технология изготовления трубок достигла совершенства, а TFT-матрицы все еще развиваются. Поэтому цветовое разрешение и цветовой охват у традиционных «трубочных» мониторов лучше. Заметно лучше. TFT не может воспроизводить цвет и яркость во всех направлениях одинаково, как трубка. Оператору достаточно немного наклонить голову, и картинка сразу меняет цвет, яркость, контраст. Где уж тут до тонких настроек!

У монитора тоже есть профайл, думаю, Вы об этом уже догадались. Его нужно обязательно подключить к системе: (Свойства экрана, Дополнительно, Управление цветом). Рекомендую – откалибровать и одновременно получить более точный профайл в программе Adobe Gamma. Профайлы от производителя – усреднение по ряду моделей. Верх совершенства – программно-аппаратные комплексы по калибрации мониторов. Но это дорого и необоснованно для непрофессиональной работы.

Монитор, на котором обрабатывают фото для цифровой печати настоятельно рекомендуется отрегулировать на цветовую температуру в 6500К, после чего вновь откалибровать и получить профайл.

При кардинальном изменении освещения в помещении и не реже раза в год производить повторные калибровки монитора. За год интенсивного использования могут уплыть параметры люминофоров.

Цифровая печать в фотосервисе

Каким образом цифровые минилабы обращают файл с изображением в отпечаток на фотобумаге? Цифровых минилабов сейчас довольно много, но подходов к формированию изображения на фотобумаге несколько. Рассмотрим основные из их.

Первый заключается в использовании трех лазеров (источники излучения высокой спектральной чистоты, т.е. монохромного излучения) основных цветов: красный, зеленый и синий. Они смешиваются в необходимых пропорциях в оптической системе минилаба и благодаря вращающейся оптической призме построчно экспонируют фотобумагу. На этом этапе происходит традиционный аддитивный синтез. Основное преимущество такого подхода по сравнению с прочими состоит в том, что каждая точка изображения формируется практически идеальным источником света, что обеспечивает очень хорошую однородность цвета и яркости по всему полю фотографии.

Второй подход использует линейки светоизлучающих элементов, обычно светодиодов. По линейке на каждый основной цвет. Т.е. никакой строчной развертки и вращающейся призмы нет – это несколько упрощает и удешевляет конструкцию. Однако каждый из элементов линейки обладает уникальными световыми характеристиками, поэтому время от времени печатающие узлы требуют калибровки. Ясно, что, не смотря на калибровку, однородность по полю фотографии проигрывают «лазерному», да и пятно лазера меньше по диаметру, что позволяет иметь наивысшее разрешение.

Третий подход — разновидность второго подхода – использование в линейке не светоизлучающих элементов, а миниатюрных заслонок (световых микроклапанов), которые срабатывают от электронных импульсов и в нужный момент пропускают необходимое количество света от источника опорного цвета (лампа и сменные светофильтры). Однородность изображения выше, но сложнее конструкция. Высокое разрешение – не конек такой системы.

Четвертый поход — вместо заслонок – микрозеркала, а вместо линеек – матрица. Т.е. фотобумага экспонируется не построчно, а за три раза – для каждого из основных цветов. Плюсы: однородность по полю изображение. Минусы: низкое разрешение.

Пятый подход похож на применяемый в обычном мониторе на базе электроннолучевой трубки. Только монитор этот плоский, всего в одну строку. Изображение рисуется на этой единственной строке электронным лучом по мере движения фотобумаги вдоль трубки. Чтобы луч не рассеивался в стекле по дороге к эмульсии фотобумаги, экспонирующая поверхность трубки состоит из оптических волокон. Разрешение такой метод дает солидное — до 500dpi, но требует калибровки, т.к. люминофору свойственна неоднородность и уплывание параметров с течением времени.

Шестой подход напоминает о цифровых проекторах. Изображение формируется на базе жидкокристаллической матрицы, работающей на просвет. Матрица одна, один источник света и три светофильтра. Последовательно меняются светофильтры и изображение (черно-белое) на матрице – опять же аддитивны синтез. Применяется хитрость для сглаживания пикселизации: при каждой смене светофильтра матрица, расположенная под небольшим углом к плоскости фотобумаги поворачивается вокруг своей оси.

Что выбрать – это самая серьезная проблема владельцев цифровых минилабов. Но простому пользователю неплохо представлять всю эту кухню и понимать, что высокое разрешение и однородность цвета и яркости по всему полю фотографии требуют дорогих технических решений, а это определяет и конечную стоимость одной фотографии.

На фотографии с вечеринки размера 10х15 с 2Мп камеры Вы вряд ли сможете заметить отличие вышеописанных технологий. Стоит ли тогда переплачивать?

А если это студийный снимок 20х30 с 6Мп? Стоит подумать о лазерной технологии… кстати говоря, для таких машин нужна специальная фотобумага. На фотобумаге пригодной для обычного аналогового минилаба снимок может не только не показать преимуществ лазерной технологии, но и вообще не получиться. Это обстоятельство связано в первую очередь с очень короткими импульсами (порядка единиц наносекунд) некоторых лазеров, используемых в системе экспонирования фотобумаги и очень узкими спектрами их излучения.

Что еще сказать на последок?

Цветовой охват обычной фотобумаги достаточно узкий. Поэтому приходится ужимать цвета, что бы вписаться во весь диапазон. Обычно для фотографий применяется схема при которой предпочтение отдается цветовым соотношениям и проработке на светлых участках. Не требуйте от операторов пурпурных или ядовито-зеленых цветов на фото, даже если они присутствовали во время съемки. Фотобумага неспособна их воспроизвести, в отличие от люминофоров экрана.

Белый цвет на фотобумаге немного желтоват (теплого тона), к этому нужно быть готовым. Включите 6500К на мониторе. После часа работы в таком режиме попробуйте на минуту переключиться в 9300К, а потом обратно. Видите как относителен белый цвет?

Что бы не возникало проблем с цветом на цифровых фотоснимках, как минимум необходимо:

  • Понимание, что цвет – это, прежде всего субъективное ощущение, а уже потом физическая величина.
  • Знание такого факта, как зависимость цвета предмета от цвета источников освещения. Под лампой накаливания и под ярким солнцем цвета на фотографии будут заметно отличаться.
  • Наличие правильно откалиброванного монитора.
  • По-умолчанию или верно измененные настройки системы управления цветами Windows и Adobe Photoshop (или любого в котором Вы работаете)
  • Взаимопонимание с работниками минилаба — либо Вы полностью доверяете цветокоррекцию оператору, либо за небольшую плату корректируете цветопередачу снимков вместе.
  • Понимание того, во сколько цветовой охват фотокамеры меньше цветового охвата глаза, а цветовой охват фотобумаги меньше цветового охвата фотокамеры, а хорошего монитора – и подавно.

Автор: Илья Бесхлебный © 2003г.

28.02.2013